Hyperspectral Image Spectral-Spatial Feature Extraction via Tensor Principal Component Analysis
نویسندگان
چکیده
منابع مشابه
Feature reduction of hyperspectral images: Discriminant analysis and the first principal component
When the number of training samples is limited, feature reduction plays an important role in classification of hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed method, called DA-PC1, copes with the small sample size problem and has...
متن کاملPrincipal Component Analysis for Hyperspectral Image Classification
The availability of hyperspectral images expands the capability of using image classification to study detailed characteristics of objects, but at a cost of having to deal with huge data sets. This work studies the use of the principal component analysis as a preprocessing technique for the classification of hyperspectral images. Two hyperspectral data sets, HYDICE and AVIRIS, were used for the...
متن کاملTensor principal component analysis via convex optimization
This paper is concerned with the computation of the principal components for a general tensor, known as the tensor principal component analysis (PCA) problem. We show that the general tensor PCA problem is reducible to its special case where the tensor in question is supersymmetric with an even degree. In that case, the tensor can be embedded into a symmetric matrix. We prove that if the tensor...
متن کاملSpatial/Spectral Analysis of Hyperspectral Image Data
The integration of spatial and spectral responses in hyperspectral image data analysis has been identified as a desirable objective by the remote sensing community. However, most available attempts are based on the consideration of spectral information separately from spatial information, and thus the two types of information are not treated simultaneously. In this paper, we describe our backgr...
متن کاملMorphological Principal Component Analysis for Hyperspectral Image Analysis
This article deals with the issue of reducing the spectral dimension of a hyperspectral image using principal component analysis (PCA). To perform this dimensionality reduction, we propose the addition of spatial information in order to improve the features that are extracted. Several approaches proposed to add spatial information are discussed in this article. They are based on mathematical mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Geoscience and Remote Sensing Letters
سال: 2017
ISSN: 1545-598X,1558-0571
DOI: 10.1109/lgrs.2017.2686878